ELSEVIER

Contents lists available at ScienceDirect

North American Spine Society Journal (NASSJ)

journal homepage: www.elsevier.com/locate/xnsj

Clinical Studies

Correlation between bone density measurements on CT or MRI versus DEXA scan: A systematic review

Amer Ahmad, MD^a, Charles H Crawford III, MD^{a,b}, Steven D. Glassman, MD^{a,b}, John R. Dimar II, MD^{a,b}, Jeffrey L. Gum, MD^{a,b}, Leah Y. Carreon, MD, MSc^{b,*}

- a Department of Orthopaedic Surgery, University of Louisville School of Medicine, 550 S. Jackson St., 1st Floor ACB, Louisville, KY 40202 USA
- ^b Norton Leatherman Spine Center, 210 East Gray St, Suite 900, Louisville, KY, 40202 USA

ARTICLE INFO

Keywords: Hounsfield unit Computed tomography scan Quantitative CT scan Magnetic resonance imaging Dual-energy xray absorptiometry Correlation Osteoporosis Bone mineral density T-score Lumbar spine

ABSTRACT

Background: Novel methods of bone density assessment using computed tomography (CT) and magnetic resonance imaging (MRI) have been increasingly reported in the spine surgery literature. Correlations between these newer measurements and traditional Dual-Energy X-ray Absorptiometry (DEXA) is not well known. The purpose of this study is to perform an updated systematic review of correlations between bone mineral density (BMD) from CT or MRI and DEXA.

Methods: Articles published between 2011 and 2021 that reported correlations between the CT-HU or MRI measurements to DEXA t-scores or BMD of lumbar spine or hip were included in this systematic review.

Results: A total of 25 studies (15 CT, 10 MRI) met the inclusion criteria with a total number of 2,745 patients. The pooled correlation coefficient of spine CT-HU versus spine DEXA, spine CT-HU versus hip DEXA and spine CT-HU versus lowest t-score were 0.60, 0.50 and 0.60 respectively. Regarding spine DEXA parameters, the pooled r^2 for spine CT-HU versus spine t-score was 0.684 and spine CT-HU versus spine BMD was 0.598. Furthermore, in patients undergoing spine surgery in four studies, the pooled correlation between spine CT and spine DEXA was (r^2 : 0.64). In MRI studies, the pooled r^2 of spine MRI versus spine DEXA and spine MRI versus hip DEXA were -0.41 and -0.44 respectively.

Conclusions: CT-HU has stronger correlations with DEXA than MRI measurements. Lumbar CT-HU has the highest pooled correlation ($r^2=0.6$) with both spine DEXA and lowest skeletal t-score followed by lumbar CT-HU with hip DEXA ($r^2=0.5$) and lumbar MRI with hip ($r^2=0.44$) and spine ($r^2=0.41$) DEXA. Both imaging modalities achieved only a moderate correlation with DEXA. Few studies in both modalities have investigated the correlation in spine surgery populations and the available data shows that the correlations are worse in the degenerative spine population. A careful interruption of CT HU and MRI measurement when evaluation of BMD as they only moderately correlated with DEXA scores. At this time, it is unclear which modality is a better predictor of mechanical complications and clinical outcomes in spine surgery patients.

FDA device/drug status: Not applicable.

Author disclosures: AA: Research Support (Investigator Salary): Pfizer (D, Paid directly to institution/employer); Research Support (Investigator Salary): TSRH (B, Paid directly to institution/employer); Research Support (Investigator Salary): Cerapedics (D, Paid directly to institution/employer); Research Support (Investigator Salary): Scoliosis Research Society (E, Paid directly to institution/employer); Research Support (Investigator Salary): Medtronic (E, Paid directly to institution/employer). CHC: Royalties: Alphatec (C–D); Consulting: Medtronic (D); Consulting: Nuvasive (D); Research Support (Investigator Salary): Pfizer (D, Paid directly to institution/employer); Research Support (Investigator Salary): TSRH (B, Paid directly to institution/employer); Research Support (Investigator Salary): Alan L. & Jacqueline B. Stuart Spine Research (C, Paid directly to institution/employer); Research Support (Investigator Salary): Alan L. & Jacqueline B. Stuart Spine Research (C, Paid directly to institution/employer); Research Support (Investigator Salary): Scoliosis Research Society (E, Paid directly to institution/employer); Research Support (Investigator Salary): Medtronic (D, Paid directly to institution/employer). SDG: Royalties: Medtronic (F); Consulting: Medtronic (F); Consulting: K2M/Stryker: (D); Scientific Advisory Board/Other Office: American Spine Registry; Research Support (Investigator Salary): TSRH (B, Paid directly to institution/employer); Research Support (Investigator Salary): TSRH (B, Paid directly to institution/employer); Research Support (Investigator Salary): TSRH (B, Paid directly to institution/employer); Research Support (Investigator Salary): TSRH (B, Paid directly to institution/employer); Research Support (Investigator Salary): Scoliosis Research Support (Investigator Salary): Medtronic (E, Paid directly to institution/employer); Research Support (Investigator Salary): Medtronic (E, Paid directly to institution/employer); Research Support (Investigator Salary): Medtronic (E, Paid direct

^{*} Corresponding author. Norton Leatherman Spine Center, 210 East Gray St, Suite 900, Louisville, KY 40202, USA. Tel.: (502)-584-7525, fax: (502)-589-0849. E-mail address: leah.carreon@nortonhealthcare.org (L.Y. Carreon).

Introduction

With the increase of the aging population, osteoporosis has become a common health problem with low detection and treatment rates [1–4]. Evaluating bone strength is important in patients undergoing instrumented lumbar spine surgeries as it may be associated with mechanical failure and other complications [5]. Currently, bone mineral density (BMD) is considered the best measure for bone quality. Thus, having an accurate method to measure BMD in spine surgery is important for preoperative planning and optimization [6–8].

Dual-Energy X-ray Absorptiometry (DEXA) scans are considered the gold standard for BMD assessment [9,10], yet it has some disadvantages as it tends to overestimate the BMD in patients with degenerative spines, aortic calcifications or with high Bone Mass index (BMI) [3,11–15], characteristics which are commonly seen among patients seeking spine surgery treatment.

Computed tomography (CT) and magnetic resonance imaging (MRI) are frequently used in the preoperative assessment of spine surgery patients and recently they are increasingly used as alternatives to estimate BMD [16,17]. The purpose of this study is to perform an updated systematic review to compare between BMD estimates from lumbar CT and MRI in term of correlation with the more traditional DEXA scans.

Material and methods

A systematic search was conducted on October 2021 for articles published from 2011 to 2021 in PubMed and Google scholar data bases using the following terms: "Hounsfield units", "computed tomography", "Quantitative CT scan", "MRI", "magnetic resonance imaging", "bone mineral density", "osteoporosis", "lumbar spine", "DEXA", "DXA" and "correlation". A total of 1,131 full text articles were identified. Cohort studies written in English that reported the correlation between either the HU/MRI measurements of lumbar spine or specific level and DEXA t-score or BMD in patients older than 18-year-old regardless of CT/MRI protocol used were included. Duplicate studies, Biomechanical and cadaver studies or studies that predict the lumbar BMD using the CT or MRI without reporting the correlation coefficient with DEXA scan were excluded (Fig. 1).

The data from each included CT scan and MRI studies were collected in Excel spread sheet by the Author and included: study design, principal author, year of publication, total number of patients (N), patient's demographics, inclusion and exclusion criteria, CT and MRI protocols and regions, Measurement of Hounsfield unit and MRI methods, DEXA

scores, the mean duration between the CT/MRI and DEXA and the correlation coefficient between the CT/MRI and DEXA. Data was analyzed by two independent reviewers.

Correlation studies included in this review were categorized into 5 groups: spine CT with spine DEXA, spine CT with hip DEXA, spine CT with lowest t-score, spine MRI with spine DEXA and spine MRI with hip DEXA. The pooled correlation coefficient weighted by the sample size was calculated for each group. In addition, a separate pooled correlation coefficient was calculated for CT HU in patients undergoing spine surgery.

Results

A total of 26 studies (16 CT scan, 10 MRI) met inclusion criteria for the review with a total number of 2,745 patients. Among the CT scan correlation studies, additional one study was excluded after further review due to the inconsistency of the spine level used for measuring the HU in breast cancer patients; when L1 HU from chest CT was not available for the measurements due to compression fracture in some patients, either T12 or L2 were used as alternative level without being specified [18].

CT scan studies

All the 15 CT scan studies were retrospective with total number of 2,027 patients. The correlation of HU with spine DEXA was reported in thirteen studies (N=1,979), HU with hip DEXA in 3 studies (N:456) and HU with lowest skeletal t-score in 3 studies (N: 455). Some studies correlated the HU for each lumbar vertebra and others correlated the HU mean value for the lumbar spine (L1–L4) (Table 1) as it has been shown no significant difference between lumbar vertebrae HU values [19]. The pooled correlation coefficient of spine CT vs spine DEXA, spine CT versus hip DEXA and spine CT versus lowest t-score were 0.60, 0.50 and 0.60, respectively. Regarding spine DEXA parameters, HU was correlated with BMD only in 3 studies, with t-score only in 3 studies and with both measurements in 9 studies. The pooled $\rm r^2$ for spine CT vs spine t-score was 0.684, spine CT versus spine BMD was 0.598. Furthermore, four CT studies correlated the spine CT with spine DEXA in patients undergoing spine surgery with pooled correlation ($\rm r^2$: 0.64).

Lumbar CT without contrast was the most used for HU measurements followed by abdominal CT without contrast. There was a variation among the scanning parameters; tube current (range: 30-330mA) and slice thickness (range: 1–5 mm) which were specified in nine stud-

Research Support (Investigator Salary): TSRH (B, Paid directly to institution/employer); Research Support (Investigator Salary): Alan L. & Jacqueline B. Stuart Spine Research (C, Paid directly to institution/employer); Research Support (Investigator Salary): Scoliosis Research Society (E, Paid directly to institution/employer); Research Support (Investigator Salary): Medtronic (E, Paid directly to institution/employer). JLG: Royalties: Acuity (F); Royalties: Nuvasive (D); Stock Ownership: Intrinsic Spine: Cingulate therapeutics (<1% ownership); Consulting: Medtronic (F); Consulting: Acuity (F); Consulting: Stryker (C); Consulting: Nuvasive (D); Consulting: Nuv sulting: Mazor (B); Consulting: DePuy (B); Speaking and/or Teaching Arrangements: Baxter (A); Speaking and/or Teaching Arrangements: Broadwater (B); Speaking and/or Teaching Arrangements: Pacira (A); Board of Directors: National Spine Health Foundation; Scientific Advisory Board/Other Office: Stryker (C); Scientific Advisory Board/Other Office: Medtronic (F); Research Support (Investigator Salary): Pfizer (D, Paid directly to institution/employer); Research Support (Investigator Salary): TSRH (B, Paid directly to institution/employer); Research Support (Investigator Salary): Alan L. & Jacqueline B. Stuart Spine Research (C, Paid directly to institution/employer); Research Support (Investigator Salary): Cerapedics (D, Paid directly to institution/employer); Research Support (Investigator Salary): Scoliosis Research Society (E, Paid directly to institution/employer); Research Support (Investigator Salary): Medtronic (E, Paid directly to institution/employer). LYC: Consulting: National Spine Health Foundation (C); Consulting: Orthopedic Research Foundation (B); Scientific Advisory Board/Other Office: University of Louisville Institutional Review Board (Nonfinancial); Scientific Advisory Board/Other Office: The Spine Journal (Nonfinancial); Scientific Advisory Board/Other Office: Spine (Nonfinancial); Scientific Advisory Board/Other Office: Spine Deformity (Nonfinancial); Scientific Advisory Board/Other Office: American Spine Registry (Nonfinancial); Research Support (Investigator Salary): Pfizer (D, Paid directly to institution/employer); Research Support (Investigator Salary): TSRH (B, Paid directly to institution/employer); Research Support (Investigator Salary): Alan L. & Jacqueline B. Stuart Spine Research (C, Paid directly to institution/employer); Research Support (Investigator Salary): Cerapedics (D, Paid directly to institution/employer); Research Support (Investigator Salary): Scoliosis Research Society (E, Paid directly to institution/employer); Research Support (Investigator Salary): Medtronic (E, Paid directly to institution/employer); Research Support (Investigator Salary): SDU Faculty Scholarship (E, Paid directly to institution/employer); Research Support (Investigator Salary): Johnson & Johnson (E, Paid directly to institution/employer); Research Support (Investigator Salary): Cerapedics (F, Paid directly to institution/employer); Research Support (Investigator Salary): IRSs Kursus - og rejsepulje (B, Paid directly to institution/employer); Research Support (Investigator Salary): TrygFonden (F, Paid directly to institution/employer); Region Syddanmark PhD Puljen (E, Paid directly to institution/employer); Research Support (Investigator Salary): SLB Forskningsrad (E, Paid directly to institution/employer); Research Support (Investigator Salary): Sygeforsikring Donation (F, Paid directly to institution/employer); Research Support (Investigator Salary): Sundhedsstyrelsen (F, Paid directly to institution/employer); Research Support (Investigator Salary): SLB Forskningsrad Projektstotte (C, Paid directly to institution/employer).

Table 1 CT scan correlation studies

Study	CT scan	CT HU Region of interest (ROI)	DEXA	Max. Duration between CT & DEXA	-	Mean age (years)	Total number of patients (N)	Year of publication	Study design
Kim et al. [24]	Lumbar CT*	Largest trabecular ROI at mid axial of vertebral body	spine DEXA BMD, hip DEXA BMD	3 то	Patients undergoing lumbar spine surgery in single center	68.1	180	2019	retrospectiv
Cohen et al.	Abdominal & Lumbar CT*	Trabecular ROI on mid-axial and mid-sagittal of vertebral body	lowest skeletal T score	6 mo	Arab, Ashkenazi and Sephardic jew in single center	64	246	2021	retrospectiv
Da Zou et al. 5]	Lumbar CT*	Trabecular ROI on mid axial of vertebral body	spine DEXA T score & BMD	1 mo	Patients undergoing lumbar degenerative spine surgery in single center	Undefined	334	2018	retrospectiv
Chia et al. 27]	Contrast enhanced CT scan*	Mean of trabecular ROI measured at 3 different locations on axial image	spine DEXA T score, lowest skeletal T score	3 wks	Patients with age 50 and above who underwent CECT for any medical condition in single center		50	2021	retrospectiv
slamian et al. 21]	Abdominal & Lumbar CT*	Trabecular ROI on mid axial of vertebral body	spine DEXA BMD	3 mo	Patients with spine fracture from minor trauma who underwent both CT and DEXA within 3 mo in single center	60.2	61	2016	retrospecti
Alawi et al. [28]	Abdominopelvic & Lumbar CT*	Mean of trabecular ROI measured at 3 different locations on axial image	spine DEXA T score & BMD	2 y	Pre or postmenopausal women who underwent DEXA and CT within 2 years in single center	61.1	78	2021	retrospecti
Choi et al. 26]	Lumbar CT*	Trabecular ROI on mid axial of vertebral body	spine DEXA T score & BMD	3 mo	Patients undergoing spine surgery in single center	67.5	110	2016	retrospecti
Schcreiber et d. [20]	Abdominopelvic & Lumbar CT*	Mean of trabecular ROI measured at 3 different locations on axial image	spine DEXA T score & BMD	12 mo	Spinal trauma or compression fracture in single center	71.3	25	2011	retrospecti
ee et al. [1]	Lumbar CT	Mean of trabecular ROI measured at 3 different locations on axial image	spine DEXA T score	12 mo	Female patients above age 40 with low back pain, single center	Undefined	128	2013	retrospecti
Elarjani et al. [33]	Lumbar CT	Trabecular ROI on mid axial vertebral body and mean of 5 trabecular ROI measured at different locations on sagittal image	spine DEXA T score & BMD	1 y	Undefined	60.2	100	2021	retrospectiv
Kohan et al.	Lumbar CT	Mean of trabecular ROI measured at 3 different locations on axial image	spine DEXA BMD, hip DEXA BMD	Undefined	White female patients undergoing ASD surgery in single center	Undefined	48	2017	retrospecti
im et al. [23]	Chest LDCT*	Volumetric reconstruction analysis of multiple ROIs on axial image	spine DEXA BMD, hip DEXA BMD	30 d	patients above age 50 who underwent LDCT in single center	65.9	224	2017	retrospecti
amin et al. 10]	Abdominopelvic & Lumbar CT	Mean of trabecular ROI measured at 3 different locations on axial image	lowest skeletal T score	12 mo	Predominantly Asians from different ancestries, single center	Undefined	159	2021	retrospecti
Burke et al.	Abdominal CT*	Mean of 3 trabecular ROI on mid axial vertebral body by 3 separate readers	spine DEXA T score & BMD	6 mo	Patients over age 50, had MDCT for other clinical indications	71	171	2016	retrospecti
i et al. [19]	Abdominal CT*	Trabecular ROI on mid sagittal of vertebral body	spine DEXA T score & BMD	6 mo	Chinese patients who underwent CT and DEXA within 6 mo in single center	67	109	2018	Retrospecti

^{*} CT tubal voltage: 120 kvp.

Table 2Correlation coefficients between Spine CT and DEXA (T-score, BMD)

	CT scan										
Study	DEXA score	L1 verteb	ra	L2 verteb	ra	L3 verteb	ra	L4 verteb	ra	Lumbar sı	pine (L1–4)
Kim et al. [24]	Spine BMD	0.552		0.535		0.542		-		0.489 [‡]	
	Femur neck BMD	0.349		0.469		0.374		-		0.393	
Da Zou et al. [5]	Spine T-score	0.667*	0.767^{\dagger}	0.64*	0.767^{\dagger}	0.658*	0.717^{\dagger}	0.667*	0.764^{\dagger}	-	
	Spine BMD	0.665*	0.771^{\dagger}	0.647*	0.764 [†]	0.662*	0.732^{\dagger}	0.627*	0.77^{\dagger}	-	
Chia et al. [27]	Spine T-score	0.683		-		-		-		-	
Islamian et al.	Spine BMD	-		-		-		-		0.766	
[21] Alawi at al. [28]	Cuina Tassus	0.544		0.6		0.611		0.6			
Alawi at al. [28]	Spine T-score Spine BMD	0.544		0.623		0.653		0.612		-	
Ob -1 -4 -1 FOCT	1	0.581	0.701†	0.623	0.709 [†]		0.709 [†]		0.649 [†]	- 0.000*	0.704†
Choi et al. [26]	Spine T-score	0.3*	0.701 [†] 0.684 [†]	0.457*	0.709† 0.693†	0.433*	0.709† 0.709†	0.447*	0.639†	0.398*	0.734 [†] 0.721 [†]
Schreiber et al.	Spine BMD		0.084		0.093	0.454*	0.709	0.455*	0.639	0.426*	0.721
	Spine T-score	-		-		-		-		0.48	
[20]	Spine BMD	-		-		-				0.44	
Lee et al. [1]	Spine T-score	0.673		0.794		0.766		0.713		-	
	Spine BMD	0.657	0 = 0.4	0.774	0 = 4 0 1 1	0.737	0.4=0	0.673	0.040	-	
Elarjani et al.	Spine T-score	0.592	0.504	0.482	0.519++	0.460	0.458	0.471	0.369	-	
[33]	Spine BMD	0.559 [§]	0.468	0.482 [§]	0.504++	0.453	0.450	0.456 [§]	0.353	-	
Kohan et al. [30]	Spine BMD	-		-		-		-		0.463	
	Femur neck BMD	-		-		-		-		0.303	
Kim et al. [23]	Spine BMD	0.726		-		-		-		-	
	Femur neck BMD	0.503		-		-		-		-	
	Total hip BMD	0.665		-		-		-		-	
Burke et al. [34]	Spine T-score	0.392		-		-		-		-	
	Spine BMD	0.437		-		-		-		-	
Li et al. [19]	Spine T-score	-		-		-		-		0.62	
	Spine BMD	-		-		-		-		0.61	

^{*} Correlations in degenerative spine group.

ies only [20–28]. Axial CT was the most common plane used as ROI for HU measurements. The duration between CT scan and DEXA used as a part of inclusion criteria for patients was defined in all except for one study and it varies from 3 weeks to 2 years [Table 2].

The patients among the studies varied in ethnicity, number, inclusion, and exclusion criteria. Most of the cohorts were female (1,193 female, 398 male). Four studies only evaluated the correlation in patients undergoing spine surgery [24,26,29,30]. Patients with lumbar fractures, infections, tumors, previous spine instruments, vertebroplasty or severe spinal degeneration were excluded in most studies.

MRI studies

Seven studies were prospective and three were retrospective with total number of 1,024 patients. Eight studies reported correlations between spine MRI with spine DEXA (N=812) and two studies with hip DEXA (N=212). The pooled $\rm r^2$ of spine MRI vs spine DEXA and spine MRI vs hip DEXA were -0.41 and -0.44 respectively (Table 3).

In most studies, 1.5 Tesla Lumbar MRI without contrast was used. One study used IV contrast to measure the peak enhancement ratio as a parameter for bone marrow perfusion in the vertebral body to correlate with BMD. Another study used three Tesla machine for measuring the synthetic MRI quantitative parameters of bone physical properties. Different MRI sequences with different measurements used for the correlation: Signal-to-noise ratio (SNR) and M-score (3 studies), vertebral bone marrow fat content (4 studies), Vertebral Bone Quality (VBQ) scores, which is calculated from dividing the average signal intensities (SIs) of lumbar spine by cerebrospinal fluid (CSF) signal intensity (2 studies) and peak vertebral enhancement ratio (1 study). The duration between MRI and DEXA varied from 2 weeks to 2 years among the studies (Table 4).

Most MRI correlation studies were on female patients with different ethnicity and inclusion criteria. Mean age among the cohorts ranged from 49.3 to 65 years. Two studies only evaluated the correlation in patients undergoing degenerative spine surgeries [31,32].

Discussion

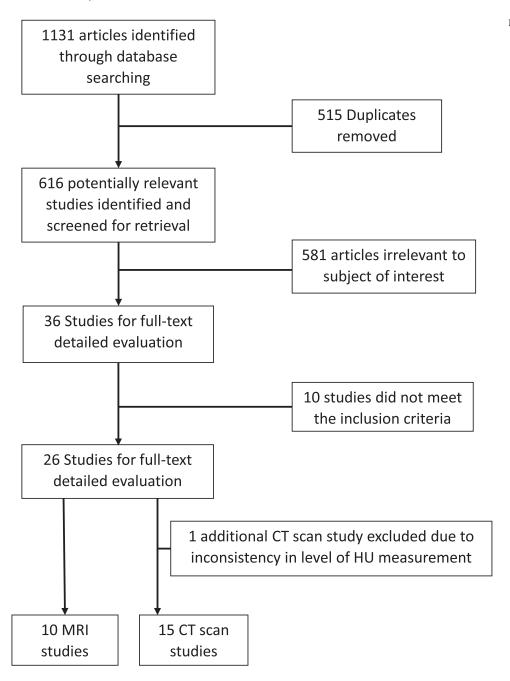
We included in our review the studies that correlated CT scan or MRI to DEXA measurements in both spine and nonspine cohorts and measured the pooled correlation weighted by the sample size for each study. Our systematic review showed that CT Hounsfield unit has stronger correlations with DEXA than MRI measurements. Lumbar CT has the highest pooled correlation ($r^2 = 0.6$) with both spine DEXA and lowest skeletal t-score followed by lumbar CT with hip DEXA ($r^2 = 0.5$) and lumbar MRI with hip ($r^2 = 0.44$) and spine ($r^2 = 0.41$) DEXA. Both imaging modalities achieved only a moderate correlation with DEXA BMD and t-scores.

The correlation studies so far either investigated the ability of CT scan or MRI as opportunistic tools for osteoporosis screening in patients with different morbidities [10,19-23,25,27,28,33-42] or as alternatives for DEXA in predicting bone quality in spine surgery population [24,26,29-32]. Few studies in both modalities (4 CT, 2 MRI) have investigated the correlation in spine surgery patients (Table 5). Among the four CT studies, Spine CT-HU with spine DEXA showed the same moderate pooled correlated (r^2 : 0.64) [24,26,29,30]. The pooled correlation could not be calculated for spine patients in MRI studies as there are only two studies, each one of them correlated spine MRI with different DEXA region [31,32].

CT scans and/or MRIs are routinely done as a part of preoperative evaluation in patients undergoing spine surgery. BMD assessment is important for surgical planning in such patients especially when using instrumentation as it can be proxy for bone strength, healing, and fusion rates. DEXA scan is still considered the gold slandered for BMD assessment and bone quality evaluation [9,10]. The inherent inaccuracy of DEXA measurements in patients with degenerative spine and the routine use of CT scan and/or MRI before spine surgery paved the way to study the potential of using these modalities as alternatives for BMD assessment in such patients.

[†] Correlations in nondegenerative spine group.

[‡] L1-3 mean value.


[§] Correlation with Axial CT HU

Correlation with Sagittal CT HU.

Table 3MRI correlation studies

Study	MRI measurement technique for ROI	MRI sequence (s) for ROI	DEXA	Max. duration between MRI and DEXA	Patients' population	Control group	Mean age (years)	Total number of patients	Year of publication	MRI measur ements Level	Study design
Ergen et al. [38]	BMFF (using T2*-IDEAL technique)	T1W spine echo sequence (TR:660 ms, TE: 8.5ms) and STIR sequence (TR: 3500 ms, TE: 42 ms)	Spine DEXA BMD	3 wk	Female patients with low back pain from single center	NA	49.3	45	2014	L1-4	prospective
Agrawal et al. [37]	BMFF and ADC (using DWI and MR Spectroscopy sequences)	T1W, T2W spine echo sequence	Spine DEXA T score & BMD	18 mo	Indian postmenopausal women who underwent DEXA in recruited randomly from single center	NA	52.4	50	2015	L3	prospective
Shen et al. [41]	BMAT	T1W whole body MRI	Spine DEXA BMD, hip DEXA BMD	Non specified	African American, Caucasian recruited from CARDIA study	NA	Undefined	76	2012	L1-5	prospective
Shih et al. [35]	LWR, lipid LW, water LW (using proton MR spectroscopy sequence)	T1W, T2W spine echo sequence	Spine DEXA BMD	2 wk	Female patients who referred to orthopedic or osteoporosis clinic	NA	58	52	2004	L3	prospective
Saad et al. [42]		T1W spine echo sequence (TR: 400-600 ms, TE:7 ms)	Spine DEXA T score & BMD	6 mo	Postmenopausal women with low back pain in single center		59.4	50	2019	L1-4	retrospective
Shayganfar et al. [40]	M score (calculated from SNR)		Spine DEXA T score	6 mo	Iranian postmenopausal women who underwent DEXA in single center	Healthy female aged between 20 and29 y	59.1	82	2019	L1-4	prospective
Shih et al. [36]	Peaked enhanced ratio (BMP) derived from time-Signal intensity curve	T1W spine echo sequence (TR:600 ms, TE: 12 ms)	Spine DEXA BMD	2 wk	Female patients who referred to orthopedic or osteoporosis clinic	NA	57	62	2004	L1-5	prospective
Bandirali et al. [39]	M score	T1W spine echo sequence (TR: 600 ms, TE: 11 ms)	Spine DEXA T score	6 mo	Caucasian female patients with low back pain in single center	Healthy Caucasian female aged between 20 and 29 years with normal BMI	65	226	2015	L1-4	retrospective
Ehresman et al. [31]	VBQ score	T1W spine echo sequence	Hip DEXA T score, lowest skeletal T score	2 y	Patients undergoing degenerative spine surgery in single center	NA	Undefined	68	2019	L1-4	retrospective
Chang et al. [32]	PD (using synthetic MRI sequences; T1 map, T2 map, PD map) and VBQ score, T1 intensity	T1W spine echo sequence	Spine DEXA T score	3 mo	Patients undergoing degenerative spine surgery in single center	NA	61.9	62	2021	L1-4	prospective

Fig. 1. Literature review workflow

In 2011, Schreiber et al introduced the Hounsfield unit for the first time as a measuring tool for BMD using Region of interest (ROI) on conventional CT scan without exposing patients to higher radiation doses compared with Quantitative CT scan [13,20]. More studies have used different CT protocols for BMD measurements in different populations to validate this method further in terms of reliability and applicability. According to the pooled correlation analysis, Spine CT showed moderate correlation with both spine and hip DEXA. Further correlation with the two spine DEXA measurements (t-score and BMD) were calculated. t-score showed a better correlation (r2: 0.684) with HU comparing with BMD (r2: 0.598). In addition, as the lowest t-score from spine and hip DEXA is now recommended by WHO for osteoporosis screening and treatment [43], we calculated from the available studies the pooled correlation for HU and the lowest skeletal t-score which showed the same moderate result as with hip or spine DEXA alone (r²: 0.60).

Among the CT studies, there was a variation in the correlations between lumbar spine HU mean values and DEXA measurements. The strongest correlation was 0.766 [21] while the lowest was 0.303 [30]. This variation could be a result of the inconsistency between the studies in terms of cohort's spine degenerative status, the durations between the images or the variations of CT calibrations (slice thickness and tuba currency) used. These variations can affect in a way or another HU measurements and DEXA differently, hence the variation in the correlation between these modalities among studies. On the other hand Using different HU ROI methods can probably not result in such variation, as the literature showed no significant difference between these different methods [13].

Despite the moderate correlation, CT scan has advantages over DEXA in spine surgery patients. It provides a three-dimensional (3D) estimate for trabecular BMD without being affected by cortical degenerative changes (sclerosis and osteophytes) or aortic calcifications which

Table 4
Correlation coefficients between spine MRI and DEXA (T-score, BMD)

study	MRI measurement*	DEXA	L1 vertebra	L2 vertebra	L3 vertebra	L4 vertebra	Lumbar spine
Ergen et al. [38]	BMFF	Spine BMD	-	-	-0.420	-	-
Agrawal et al. [37]	BMFF	Spine T-score	-	-	-0.450	-	-
		Spine BMD	-	-	-0.345	-	
Shen et al. [41]	BMAT	Spine BMD	-	-	-	-	-0.45
		Hip BMD	-	-	-	-	-0.399
Shih et al. [35]	Lipid LW	Spine BMD	-	-	-0.67	-	-
Saad et al. [42]	M score	Spine T-score	-	-	-	-	-0.48
		Spine BMD	-	-	-	-	-0.37
Shayganfar et al. [40]	M score	Spine T-score	-	-	-	-	-0.551
Shih et al. [36]	Peaked enhanced ration	Spine BMD	-	-	-	-	0.63
Bandirali et al. [39]	M score	Spine T-score	-	-	-	-	-0.682
Ehresman et al. [31]	VBQ	Femur neck T-score	-	-	-	-	-0.51
	-	Total hip T -score	-	-	-	-	-0.41
Chang et al. [32]	Proton Density	Spine T-score	-	-	-	-	-0.565
	VBQ score	-	-	-	-	-	-0.651

^{*} All MRI measurements have negative correlation with DEXA except for "Peaked enhanced ratio" which has a positive correlation.

Table 5Correlations between CT scan/ MRI and DEXA of lumbar spine in patients undergoing lumbar spine surgery

Study	Modality	Spine DEXA BMD	Spine DEXA T score	Hip DEXA BMD	Hip DEXA T score
Kim et al. [24]	Axial CT HU	0.489	-	0.393	-
Da Zou et al. [5]*	Axial CT HU	0.650 [†]	0.658^{\dagger}	-	-
		0.760*	0.754*		
Choi et al. [26]	Axial CT HU	0.426^{\dagger}	0.398 [†]	-	-
		0.721*	0.734*		
Kohan et al. [30]	Axial CT HU	0.463	-	0.303	-
Ehresman et al. [31]	MRI VBQ	-	-	-	-0.510 (Femur neck)
					-0.410 (Total hip)
Chang et al. [32]	MRI VBQ	-	-0.651	-	-
	MRI PD		-0.565		

^{*} The mean values of this study are calculated.

are common findings among these patients. This may explain the better correlation between CT and DEXA in nondegenerative spine populations (Table 5). In addition, the trabecular bone is affected the most by osteoporosis and correlated better with bone mechanical strength [44] thus can predict the fracture risk and surgical outcomes more accurately in such patients.

MRI has also been investigated as a possible surrogate for bone quality evaluation. Multiple quantitative methods have investigated measuring the trabecular bone microstructure or bone marrow fat content based on differences in signal intensities within bone tissues [31,32,35–42]. Changes in these parameters has a relevant negative correlation with osteoporosis and bone quality.

M-score, a novel MRI score simulating DEXA t-score calculation, has been introduced by Bandirali et al. [39] for the first time in 2015. It has been evaluated further by other studies [40,42] which showed a better correlation with BMD (pooled r^2 : -0.58) comparing with other MRI measurements. Another promising measurement is the peaked enhanced ratio (r^2 : 063). It measures the IV contrast uptake within the vertebral body as a reflection of bone marrow perfusion which in turn is affected by aging and osteoporosis [36]. The disadvantage of this method is that it requires contrast, which cannot be used routinely for BMD assessment.

The pooled correlation was calculated from different MRI measurements which could not be representing the actual pooled correlation for each of them. The paucity of studies of each certain method can justify calculating pooled correlation from these different measurements.

As with CT studies, MRI studies showed that same inconsistency regarding the cohorts and duration between the images which may again add to the variation in the correlations between MRI and DEXA among the studies. In addition, most patients in MRI studies are female and

the mean age is younger when compared to CT studies (49.3–65 years vs. 60.1–71 years) which may make the correlations of MRI not representative for spine population as alternative imaging for bone density evaluation.

As with CT scans, MRI measurements are also not be affected by degenerative cortical changes. Moreover, MRI lacks the radiation risk which make it even more desirable. On the other hand, claustrophobia and metallic implants are unique limitations for this modality. The existing literature has several limitations: Most MRI and CT cohorts were females, which means the results could not be necessarily applied to the general populations. Focusing on such population can be justified since the guidelines for DEXA screeningw and osteoporosis treatment are designed for pre- and post-menopausal women only and no consistent ones for male patients yet [6].

Both MRI and CT studies lack the consistency in cohort's populations, imaging protocols and durations between the imaging. In addition, Studies targeting spine surgical patients are still few and more investigation is needed not only to understand how effective these modalities are in predicting bone strength, but also to acknowledge the reliability in predicting surgical outcomes and complications in such patients. Finally, both CT scans and MRIs have limitations, despite showing superiority over DEXA in BMD measurement in degenerative spine, they still have limited application in pathologies that affect the cancellous bone (eg.; tumors, infections, or fractures). Vertebroplasty and previous spinal instrumentation also can affect the measurements in both modalities.

In conclusion, CT-HU has stronger moderate correlation with DEXA than MRI. Both modalities are superior to DEXA in degenerative spine which gives them a great potential in evaluating bone quality in spine

[†] correlations in degenerative spine group.

[‡] correlations in non-degenerative spine group.

surgery populations. There are inconsistencies among correlation studies regarding cohorts, imaging timing and protocols which can be responsible for the heterogeneity of the results. Studies targeting spine surgical patients are still few and more investigation is needed to understand the correlation better between these modalities and clinical outcomes

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

No funding was received for the design, in the collection, analysis, and interpretation of data; in the writing of the manuscript; and in the decision to submit the manuscript for publication.

References

- [1] Lee BJ, Koo HW, Yoon SW, et al. Usefulness of trabecular ct attenuation measurement of lumbar spine in predicting osteoporotic compression fracture: is the L4 trabecular region of interest most relevant? Spine (Phila Pa 1976) 2021;46(3):175–83.
- [2] Lee SJ, Binkley N, Lubner MG, et al. Opportunistic screening for osteoporosis using the sagittal reconstruction from routine abdominal CT for combined assessment of vertebral fractures and density. Osteoporos Int 2016;27(3):1131–6.
- [3] Gausden EB, Nwachukwu BU, Schreiber JJ, et al. Opportunistic use of CT imaging for osteoporosis screening and bone density assessment: a qualitative systematic review. J Bone Joint Surg Am 2017;99(18):1580–90.
- [4] Pickhardt PJ, Pooler BD, Lauder T, et al. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med 2013;158(8):588–95.
- [5] Zou D, Jiang S, Zhou S, et al. Prevalence of osteoporosis in patients undergoing lumbar fusion for lumbar degenerative diseases: a combination of DXA and Hounsfield units. Spine (Phila Pa 1976) 2020;45(7):E406–10.
- [6] Pennington Z, Ehresman J, Lubelski D, et al. Assessing underlying bone quality in spine surgery patients: a narrative review of dual-energy X-ray absorptiometry (DXA) and alternatives. Spine J 2021;21(2):321–31.
- [7] Ahern DP, McDonnell JM, Riffault M, et al. A meta-analysis of the diagnostic accuracy of Hounsfield units on computed topography relative to dual-energy X-ray absorptiometry for the diagnosis of osteoporosis in the spine surgery population. Spine J 2021;21(10):1738-49.
- [8] Silva BC, Leslie WD, Resch H, et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 2014;29(3):518–30.
- [9] Hocaoglu E, Inci E, Vural M. Could computed tomography Hounsfield unit values of lumbar vertebrae detect osteoporosis? Curr Med Imaging 2021;17(8):988–95.
- [10] Amin MFM, Zakaria WMW, Yahya N. Correlation between Hounsfield unit derived from head, thorax, abdomen, spine and pelvis CT and t-scores from DXA. Skeletal Radiol 2021;50(12):2525–35.
- [11] Yu EW, Thomas BJ, Brown JK, et al. Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res 2012;27(1):119–24.
- [12] Salzmann SN, Shirahata T, Yang J, et al. Regional bone mineral density differences measured by quantitative computed tomography: does the standard clinically used L1-L2 average correlate with the entire lumbosacral spine? Spine J 2019;19(4):695–702.
- [13] Zaidi Q, Danisa OA, Cheng W. Measurement techniques and utility of Hounsfield unit values for assessment of bone quality prior to spinal instrumentation: a review of current literature. Spine (Phila Pa 1976) 2019:44(4):E239–44.
- [14] Wichmann JL, Booz C, Wesarg S, et al. Dual-energy cT-based phantomless in vivo threedimensional bone mineral density assessment of the lumbar spine1. Radiology 2014;271(3):778–84.
- [15] Cherif R, Vico L, Laroche N, et al. Dual-energy X-ray absorptiometry underestimates in vivo lumbar spine bone mineral density in overweight rats. J Bone Miner Metab 2018;36(1):31–9.
- [16] Flanigan PM, Mikula AL, Peters PA, et al. Regional improvements in lumbosacropelvic Hounsfield units following teriparatide treatment. Neurosurg Focus 2020;49(2):E11.
- [17] Sollmann N, Löffler MT, Kronthaler S, et al. MRI-based quantitative osteoporosis imaging at the spine and femur. J Magn Reson Imaging 2021;54(1):12–35.

- [18] Park SH, Jeong YM, Lee HY, et al. Opportunistic use of chest CT for screening osteoporosis and predicting the risk of incidental fracture in breast cancer patients: a retrospective longitudinal study. PLoS One 2020;15(10):e0240084.
- [19] Li YL, Wong KH, Law MW-M, et al. Opportunistic screening for osteoporosis in abdominal computed tomography for Chinese population. Arch Osteoporos 2018;13(1):76.
- [20] Schreiber JJ, Anderson PA, Rosas HG, et al. Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management. J Bone Joint Surg Am 2011;93(11):1057–63.
- [21] Islamian PJ, Garoosi I, Fard KA, et al. Comparison between the MDCT and the DXA scanners in the evaluation of BMD in the lumbar spine densitometry. Egypt J Radiol Nucl Med 2016;47(3):961–7.
- [22] Lee S, Chung CK, Oh SH, et al. Correlation between bone mineral density measured by dual-energy x-ray absorptiometry and hounsfield units measured by diagnostic CT in lumbar spine. J Korean Neurosurg Soc 2013;54(5):384–9.
- [23] Kim YW, Kim JH, Yoon SH, et al. Vertebral bone attenuation on low-dose chest CT: quantitative volumetric analysis for bone fragility assessment. Osteoporos Int 2017;28(1):329–38.
- [24] Kim KJ, Kim DH, Lee JI, et al. Hounsfield units on lumbar computed tomography for predicting regional bone mineral density. Open Med (Wars) 2019;14:545–51.
- [25] Cohen A, et al. Opportunistic screening for osteoporosis and osteopenia by routine computed tomography scan: a heterogeneous, multiethnic, middle-eastern population validation study. Eur J Radiol 2021;136:109568.
- [26] Choi MK, Kim SM, Lim JK. Diagnostic efficacy of Hounsfield units in spine CT for the assessment of real bone mineral density of degenerative spine: correlation study between T-scores determined by DEXA scan and Hounsfield units from CT. Acta Neurochir (Wien) 2016;158(7):1421–7.
- [27] Chia KK, Haron J, Nik Malek NFS. Accuracy of computed tomography attenuation value of lumbar vertebra to assess bone mineral density. Malays J Med Sci 2021;28(1):41–50.
- [28] Alawi M, Begum A, Harraz M, et al. Dual-energy x-ray absorptiometry (DEXA) scan versus computed tomography for bone density assessment. Cureus 2021;13(2):e13261.
- [29] Zou D, Li W, Deng C, et al. The use of CT Hounsfield unit values to identify the undiagnosed spinal osteoporosis in patients with lumbar degenerative diseases. Eur Spine J 2019;28(8):1758–66.
- [30] Kohan EM, Nemani VM, Hershman S, et al. Lumbar computed tomography scans are not appropriate surrogates for bone mineral density scans in primary adult spinal deformity. Neurosurg Focus 2017;43(6):E4.
- [31] Ehresman J, Pennington Z, Schilling A, et al. Novel MRI-based score for assessment of bone density in operative spine patients. Spine J 2020;20(4):556–62.
- [32] Chang HK, Hsu TW, Ku J, et al. Simple parameters of synthetic MRI for assessment of bone density in patients with spinal degenerative disease. J Neurosurg Spine 2021:1–8
- [33] Elarjani T, Warner T, Nguyen K, et al. Quantifying bone quality using computed tomography Hounsfield units in the mid-sagittal view of the lumbar spine. World Neurosurg 2021;151:e418–25.
- [34] Burke CJ, Didolkar MM, Barnhart HX, et al. The use of routine non density calibrated clinical computed tomography data as a potentially useful screening tool for identifying patients with osteoporosis. Clin Cases Miner Bone Metab 2016;13(2):135–40.
- [35] Shih TT, Chang CJ, Hsu CY, et al. Correlation of bone marrow lipid water content with bone mineral density on the lumbar spine. Spine (Phila Pa 1976) 2004;29(24):2844–50.
- [36] Shih TT-F, Liu HC, Chang CJ, et al. Correlation of MR lumbar spine bone marrow perfusion with bone mineral density in female subjects. Radiology 2004;233(1):121–8.
- [37] Agrawal K, Agarwal Y, Chopra RK, et al. Evaluation of MR Spectroscopy and diffusion-weighted MRI in postmenopausal bone strength. Cureus 2015;7(9):e327.
- [38] Ergen FB, Gulal G, Yildiz AE, et al. Fat fraction estimation of the vertebrae in females using the T2*-IDEAL technique in detection of reduced bone mineralization level: comparison with bone mineral densitometry. J Compu Assist Tomogr 2014;38(2):320-4.
- [39] Bandirali M, Leo GD, Papini GDE, et al. A new diagnostic score to detect osteoporosis in patients undergoing lumbar spine MRI. Eur Radiol 2015;25(10):2951–9.
- [40] Shayganfar A, Khodayi M, Ebrahimian S, et al. Quantitative diagnosis of osteoporosis using lumbar spine signal intensity in magnetic resonance imaging. Br J Radiol 2019;92(1097).
- [41] Shen W, Scherzer R, Gantz M, et al. Relationship between MRI-measured bone marrow adipose tissue and hip and spine bone mineral density in African-American and Caucasian participants: the CARDIA study. J Clin Endocrinol Metab 2012;97(4):1337–46.
- [42] Saad MM, Ahmed AT, Mohamed KE, et al. Role of lumbar spine signal intensity measurement by MRI in the diagnosis of osteoporosis in post-menopausal women. Egypt J Radiol Nucl Med 2019;50(1):1–7.
- [43] Sebro R, Ashok SS. A statistical approach regarding the diagnosis of osteoporosis and osteopenia from DXA: are we underdiagnosing osteoporosis? JBMR Plus 2021;5(2):e10444.
- [44] Kulkarni AG, Thonangi Y, Pathan S, et al. Should Q-CT be the gold standard for detecting spinal osteoporosis? Spine (Phila Pa 1976) 2022;47(6):E258–64.